The Exact Rational Solutions to a Shallow Water Wave-Like Equation by Generalized Bilinear Method
نویسندگان
چکیده
A Shallow Water Wave-like nonlinear differential equation is considered by using the generalized bilinear equation with the generalized bilinear derivatives 3,x D and 3,t D , which possesses the same bilinear form as the standard shallow water wave bilinear equation. By symbolic computation, four presented classes of rational solutions contain all rational solutions to the resulting Shallow Water Wave-like equation, which generated from a search for polynomial solutions to the corresponding generalized bilinear equation.
منابع مشابه
Traveling wave solutions for shallow water wave equation by ( G ′ G ) - expansion method
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the ( G′ G ) -expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic so...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملElastic and Annihilation Solitons of the (3+1)-Dimensional Generalized Shallow Water Wave System
Many dynamical problems in physics and other natural fields are usually characterized by the nonlinear evolution of partial differential equations known as governing equations. Searching for an analytical exact solution to a nonlinear system has long been an important and interesting topic in nonlinear science both for physicists and mathematicians, and various methods for obtaining exact solut...
متن کاملExact Solutions of the Nonlinear Generalized Shallow Water Wave Equation
Submitted: Nov 12, 2013; Accepted: Dec 18, 2013; Published: Dec 22, 2013 Abstract: In this article, we have employed an enhanced (G′/G)-expansion method to find the exact solutions first and then the solitary wave solutions of the nonlinear generalized shallow water wave equation. Here we have derived solitons, singular solitons and periodic wave solutions through the enhanced (G′/G)-expansion ...
متن کامل